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Stochastic Resonance (SR)
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Sta je to optimalni 3um u pogledu prenosa signala?

To je konaCan OPTIMALAN nivo Suma za koji je odgovor sistema
maksimalan: STOHASTICNA REZONANCA (SR)



SR Mehanizam
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Sum

Cestica pod periodi¢nim uticajem u bistabilnom potencijalu

Sum nula: Eestica osciluje unutar jame

Konacni Sum: Cestica moze da preskace izmedu dve jame



Koherentna rezonanca (KR)

Coherence Resonance (CR)



Koherentnha rezonanca
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SuM » | sistem ,» output

“Stohasti¢na Rezonanca bez Spoljasnje Periodi¢ne Sile”
Gang et al PRL (1993)

SR: odgovor bistabilnog sistema na SPOLJASNJU periodi¢nu silu, 3um prisutan
KR (CR): koherentno kretanje stimulisano UNUTRASNJOM dinamikom sistema

SUMOM IZAZVANE OSCILACIJE

SISTEM ISPOD BIFURKACIJE (Hopf, saddle node bif. on a limit cycle)



PROTOTIP MODELA ZA KR (CR)
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|a|>1 : stabilna fiksna tacka (stable fixed point)
|a| <1 : grani¢ni krug (limit cycle)

“Coherence Resonance in a Noise-Driven Excitable System”
Pikovsky and Kurths PRL (1997)
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Kvantifikacija KR (CR) :
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Tnflnemes of the interaction time-delay on the noise inducsd system
fpe veanmancs fn & svetem of all-toeall electrically coupled FiteHughs
Napmmo excitable neurons is stodied. B i olseresd that sall dme
lngs deerease and that large time-lags increase the coberenee of spik-
ing. Bifurcations of the svsbem’s stationary stabe are used wo explain

the ohecrved non-monotonie dependence of coberenee on the time-lng,

PACE 05.45.X1; 02.530.Ks

Iniroduetion

Clollective variables of a svetem of stochactically cvolving wnite can display
regular colerenl dyvoaies, Rewackably, the collective dyuamics can be the
moat coheremt for a cortain amall range of intermediate vaines of the pararm-
eters that characterize stochasticity of the single units. Stochastic resohance
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1] is the most famous example of such constructive role of the dynamical
noise. Other phenomena of the same type, like coherence resonance [2][1],
have been discovered and studied in various model systems and experiments
3]. One of more recently described properties of noise induced coherence
phenomena is the dependence of the level of coherence on the size of the sys-
tem. Tt has been observed, for the first time in [4], that the level of coherence
in the noise induced oscillations of the collective variables depends on the size
of the system, i.e. on the number of coupled units N, and that for systems
with moderate N the maximum of coherence, for fixed noise amplitude, is
obtained for an intermediate value of N. In this note we study the influence
of interaction time-delay on the noise induced coherence and in particular on
the effects of time-delay on the system size coherence resonance (SSCR).

The phenomenon of SSCR has been studied in examples of nenronal net-
works [5] and suggested to be an important mechanism in dynamics of real
networks of neurons [5]. However, in the model studies of SSCR in neuronal
networks [5] the inter-neuronal connections have been modeled by instanta-
neous interaction, which is an oversimplification with potentially important
consequences. It is well known from mimerons studies (please see for example
7, 8, 9] and the references therein) that the interaction time-delay of moder-
ate and biologically relevant size can influence, for example, the stability and
synchronization of the neuronal dynamics. Effects of the standard coherence
resonance, observed in collections of neurons, are also strongly influcnced by
the varving time-delay. In this note we shall describe the influence of the
interaction time-delay on the phenomenon of SSCR in a system of excitable
neurons, and discuss the bifurcations that are relevant for the the observed
dependence of the coherence on the infteraction time-delay.

The model

We shall study a system of excitable neurons modeled by the following
set of stochastic delay-differential equations ( SDDE}:

N
ede; = (w—a”/3—y+ Ddt + ji\f S (@it — 1) — @)dt
i=
dy; = (z+b)di + v 2DdW;, (1)

where b, 7,¢, D and ¢ < 1 are parameters. Single imcoupled unit in (1)
represent one of the common ways of writing the famous FitzHugh-Nagumo
(FN) model [6] of the excitable behavior. For certain parameter values,
like b = 1.05,7 = 0 to be used throughout this work, each single isolated
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unit has stable stationary solution (@, yp) such that small departures from
(20, o) might lead to large and long lasting excursions away from {2g, y)
which nevertheless end nup on the stable state (o, wo). The type of excitable
behavior epitomized by the FN model is called type 1T [6] and is characterized
by destabilization of the stationary state via the Hopf bifurcation.

The terms v21diW,; represent stochastic increments of independent Wiener
processes, Le. dW; satisly: E(dW;} = 0, E{dW;dW;) = & ;dl, where £()
denoles the expectation over many realizations of the stochastic process.

Eachiofd=1,2... N units in (1) is coupled with cach other unit and with
itsclf. The model (1) with instantancous clectrical synapses was used in [5)
to study the effect of SSCR. Therefore. in (1} we use the electrical coupling
with the time-lag 7 > 0. The time-lag 7 and the coupling strength ¢ aee, for
simplicity, equal for all pairs of neurons.

Phenomenology of SSCR with the interaction time deloy

'I'he parameters in (1) are such that for T = 0 each of the neurons, and
the total system, are excitable, i.e. the stationarv state is stable but small
deviation from the stationary state might lead 1o large transient values of 7.
This is why small noisy fluctuations can result in a series of spikes with large
a; amplitude of each unit which resemnble oscillatory hehavior. Tn general,
the spikes in each of the nenroms appear with an rrepniar distribntion of the
interspike intervals, and spiking of different units is not svnchronized. The
dynamics of the collective variables X(t) = =V 2,/N and Y (1) = =V /N
is in general given by a stochastically distributed sequence of spikes, with
different duration, and small fiuctuations. However, for some combination
of the parameter values the interspike intervals and the spike duration of
ithe collective variables appear quite regular, and e dyoamics reseimbles
eoherent oscillations with the well defined frequency. The level of coherence of
the collective dynamics can be measured by various parameters. We shall nse
the jitter, defined as the standard deviation of the distribution of interspike
intervals Ty y normalized to its average

_J{:T_%::- < Ty > 5 _}f{;T,?-;v < Ty »*

R N ¥
< Ty > < Ty >

Smaller values of My y signify more coherent dynamics. Tn the numerical
caleulations, it is congidered that X or ¥V experiences a spike if it iz lavger
then some valune, in our case: for example X > Xy — 1. The value of
Ea i oguite dependent of X, In our nmmerieal integralion we have used
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the Hunge-Kutta 4-th order routine for the deterministic part of (1) and the
Euler method for the stochastic part. Many sample paths for each value of the
variable parameters ), 5 and t have been calenlated. Results are compared
with computations performed using ready made programs for solving SDD1 s
available within the XPP package [10]. Values of Ry (N) that are presented
in what foliows (ﬁg. ia,b] represent values that have been oblained with a
smgle typical sample path. The sample path was taken sufficiently long 20
that increasing it did not change the values of By { N on the seale of fig 1ah,

The eflect of the inleraclion lme-delay on Lhe coherence properlies of
the time series X (1) is induced by the faet that non-zero time lag influcnces
the stability of the stalionary state and the svoachronization of spiking, Fig,
la,b illustrate the influence of nonzero time delay on the coherence of X (f)
for two fixed values of noise and for different values of the system size N.
Similar curves are obtained for other fixed small values of noise intensity.
All eurves on fig. 1a b, illustrating the functions ey (V) for fixed noise level
and for different fixed time-lag 7. do have clear minima 72,,,,{/2. 7} at some
NAD, 7). As is indicated, the value of N correspanding to the maximal
eoherence and the level of coherence 17 depend om the timedag 7 {and on the
noise level D). However, the dependence of R,,.;,.(D, 7] on 7 is not monatonie,
Increasing small values of 7 tends to decrease of the coherence for all ¥ and
spectally for NJD, 7). On the other band, for + larger then some value
the inerease of v tmplies better coberence, e, small values of R(N) and
in particular smaller R,,;,,. Furthermore, the time-delay shifts the position
of the maximal coherence NJ{(D, 7} towards smaller N. In figares 2ab.e we
illustrate segments of the time series X{t) for the values of N corresponding
to the maximal coberence for three pairs of D, 7 values mdicated 1 be 3a,
An explanation of the non-monotonic dependence of Ry y on 7 is provided
by studying the bifurcations of the collective dynamics induced by the time-
delay 7.

Amplitude death of the collective pscillotions

Time delay induced amplitude death s an important phenomenon which
ocenr in defay conpled oscillators [11] [121.[7], and consist. in a replacement
of stable pseillations hy a stable stationary state, which 15 indhaced by the
inverse Hopf bifircation for some value of the time-delay. When the time-
lag i near the bifurcation valnes, correspanding to the lawer and the upper
bonndary of the r-domain for the amplitunde death, the oseillations of the
system have much sipaller anplitudes, which approadh zero as the mnphitade
death parameter domain is approached. Consider now a relaxation oscillator
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which can display delay induced amplitude death but with added stochastic
fluctuations. The effect of fluctuations is negligible when the oscillations have
large amplitudes. However, as the parameter domain of the amplitude death
is approached the regular oscillations amplitude becomes smaller and the
fluctuations become more important. Thus, coherence of the oscillations is
decreasing or increasing wheo the systewt is approaching or advanciug away
from the parameter domain corresponding to the amplitude death.

‘The type of dynamics of the collective variables X (%}, Y (£} can be pre-
dicted by a simple mean feld approximation of the system (1) which we have
recently developed [13]. Using the standard assnmptions of the mean-fieid
approach but applied to systems with delayed interaction the following sim-
ple system of only two ordinary delay-differential equations was obtamed as
the approximation of the exact system (1) of SDDE

a.:"x{t) _ : ‘s ¢
e—— = X’{t)—h(tf/ﬂ
- )‘T(ﬂ 1—c—X(t)er\/(c—1+X?(t))?+49]
- — V() + Xt —7) - X(1)),
Y(t) :
? - .}ﬁ (f}—!‘f.’. {:3)

The phenomenon of delay induced amplitude death for small D and ¢ of
X{t).Y(t) can be guantitatively studied by an analysis of the bifurcations
that ocenr in the approximate system (3). The corresponding bifureation
formulas have been obtained in [13], and the general formmlas will not be re-
produced here. In fig. 3a we reproduce the curves of direct and inverse Hopf
bifurcations for the values of the parameters that are relevant for our present
analysis, and can be used to explain the dependence of the coherence Ry )y
on 7 for hxed D and arbitrary N. For sufhciently large NV, the bifurcations
of the X{t), Y(¢) dynamics of the cxact system are not only qualitatively
the same as for the approximate system but even the quantitative values of
the parameters corresponding to the bifurcation points, and the parameter
domains of different stability. are well predicted by the approximate system.
For example, the bifurcation curves of the approximate system pl(‘diots that
for the parameters D, 7 in the domain between the curves 'r{j + the sta-
tionary state shounld be stable. The exact dynamies of X {1‘) Y(l‘) for 07
in the specified domain and for N = 95 is illustrated in fig. 3b. We sce
that there is no large spikes of X(.‘C)q the dynamics is that of subiireshold



stochastic fluctuations. It is interesting to observe that the local variables
w:{t), y;:(1) nevertheless can display oscillatory dynamics (fig.3b). On the
other hand, for quite small N, like those that correspond to the maximal
coherence in fig. 1ah, the agrement hetween the quantitative values of the
parameters that correspond to the qualitative change of the exact dynamics
and the bifurcations of the approxitmale systetus are gol as good as they are
for larger N. Nevertheless, there is a domain of D, 7 values with small 1) and
relatively small but nonzero 7 inferval, which is relatively near the domain
of the amplitude death and the neighboring bifurcations of the approximate
system, such that the exact dynamics of X (¢), Y (#) is not dominated by large
amplitude oscillations but by the stochastic Quetuations, as if the stationary
state is stochastically stable. For small V such small fluctuations can oc-
casionally induce a large amplitude spike, but they appear quite irregularly.
As NV is increased the qualitative bifurcations and the bifurcation values of
the parameters predicted by the approximate system become more relevant
for the exact system global dynamics.

Consider the bifurcation diagram of the approximate system {3) in the
(D, 7) plane for fixed arbitrary positive ¢, like in fig. 3a. I'or the parameters
D and 7 to the left and to the right of the bifurcation curves and below
the bifurcation curves the stationary state of the approximate systems is
unstable for any 7. For D in the area below the bifurcation curves the
stability of the stationary state is changed when the bifurcation curves are
erossed. Crossing of 77_ (gray on fig. 3a ) from below implics decrease of
the nimber of unstable directions, and npon crossing 7°_ from below the
nimber of nnstable directions is increased. For example, the area between
the curves Té}_ and T£.1+, corresponds to the amplifude death, the stationary
state is stabilized by the time-delay.

Rifurcation curves of the approximate system snggest the following qual-
itative properties of dynamics of the global variables of the exact system. As
pointed out, for relatively small N like those that correspond to the min-
ima of the coherence curves of fig. 1a,b, the predictions of the exact global
dynamics must be considered only as qualitative and approximate, but for
large N the approximation of the stability regions in the parameter domaing
become even quantitatively correct. For the parameters 1) and 7 to the left
and to the right of the bilurcation curves the stochastic Quctuations and
the coupling induce more or less stochastic sequence of spikes in the exact
system. For 7, 1) below the values on the bifurcation curve 70 the global

el
variables also display oscillatory-like dynamics. As 7 is increased, for fixed



other parameters like D on fig. 3a, the curve frf is approached from below,

the oscillation amplitudes decrease, the statistical fluctuations become dom-
inant and the coherence is in general decreased. Above the curve 72 and
helow T; the stationary state of the system is stochastically stahle and the
oscillatory behavior is unstable. Stochastic fluctuations constantly attempt
to move the systemn away from the stationary state but the stationary state
is stabilized by the appropriate time-delay and constantly attracts beck the
system. As 7 i3 further increased beyond the curve 'rj " the stationary state
hecomes unstable and a stable limit cycle is created around it. However, the
size of the limit cycle is proportional to the distance from the bifurcation
curve 7., on the lower side and from the bifurcation curve 71 on the upper
side. T'he system for the parameters between these two curves oscillates but
with a relatively small amplitude. Such dynamics must be considered as
subthreshold oscillations.

As 7 is increased, there are snch D values that the number of 77, curves
crogsged hy the vertical with constant D becomes larger than the number
of the crossed 77_ (point ¢ on fig. 3a ). The oscillatory dynamics is then
stable for all larger 7. Furthermore, for sufficiently large 7 the amplitude
of the (stochastically) stable limit cycle can be large enough so that the
dynamics on it can be considered as spiking. Tor such 7 the fluctuations
become negligible and the coherence is again increased.

Summary

We have studied the influence of interaction time-delay in a system of
all-to-all coupled excitable neurons which display the system size coherence
of noise induced oscillations. It is observed that the coherence of spiking
dynamics of the global variables has non-monotonic dependence on the in-
feraction delay, and that time-delay tends to shift N that corresponds to the
maximal coherence towards smaller values. The non-monotonie dependence
of coherence on 7 is related to the occurrence of the domain of time-lags for
which the oscillations of the global variable are replaced by small fluctuations
around the stable stationary state, i.e. to the phenomenon of delay induced
amplitude death of the global variables. We have no explanation for the
ohserved time-delay induced shift of N that correspands ta the maximal ca-
herence. Mean-field approximate equations are used to quantitatively study
the Hopf bifurcations which are responsible for the amplitude death in the
approximate model and suggest the type of dynamics of global variables of
the exact systemn.
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Figure 1 lllustrates dependence of the jitter K on N for fixed 1) = (.001
(a} and D = 0.003(h), and for fime-lags in {a) 7 = 0 {iriangles), 7 — 0.2
(hoxes) and 7 = 7 (circles): and in (b) 7 = 0 {triangles], T = (.08 {hoxes)
and T = 2.7 (circles). Other parameters are b = 1.05, ¢ = 0.1.
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Figure 2 Segments of the time series X (t) for D = 0.003,¢ = 0.1,b = 1.05
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cohierence for fixed 7.
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SR history: recurrence of ice ages

Benzi et al (1981, 1982)
C. Nicolis (1982)

Does SR rule the periodically recurrent ice ages? (periodicity ~ 10000 years)

Global climate: double well potential

Small modulation of earth's orbital eccentricity: weak periodic forcing
Short term|climate fluctuations: Gaussian white noise

period ~ 10000 years !

MATHCING OF TWO
ASTRONOMICAL TIME SCALES
AT OPTIMAL NOISE




First experimental verification of SR

Fauve and Heslot (1983)

Scmitt trigger device
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Living organisms use noise for optimal detection

Douglas et al Nature (1993)
hydrodynamically

sensitive sensors

PREDATOR (hungry fish) PREY (crayfish)

noise: water turbulence
periodic force: water vibrations generated by fish tail

The crayfish detects the hungry fish easier on the background of water turbulence!
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